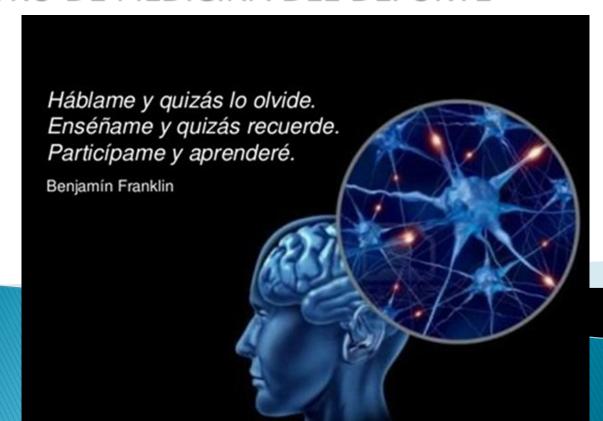


UNIDAD DE CONTROL DEL RENDIMIENTO

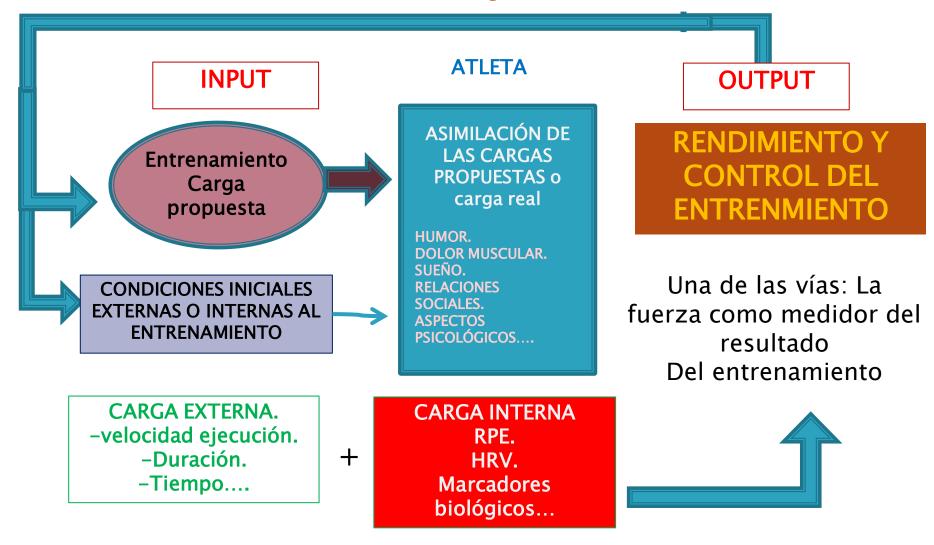
CENTRO DE MEDICINA DEL DEPORTE

VALORACION DE FUERZA Y POTENCIA EN LA UCR


Elaia Torrontegui Ronco Guillermo Sánchez Martínez

UNIDAD DE CONTROL DEL RENDIMIENTO

CENTRO DE MEDICINA DEL DEPORTE



Elaia Torrontegui Ronco Guillermo Sánchez Martínez

ÍNDICE:

- Objetivos de la evaluación de la fuerza.
- Tipos de evaluación.
- Que podemos medir, Mediciones isoinerciales, mov balísticos.
- Importancia de la cuantificación de la fuerza y la potencia a través de la velocidad.
- RM y problemas.
- Teoría de vectores, Descripción del Perfil F-V.
- Perfiles individualizados de F-V.
- Aplicación practica Unidad de control del Rendimiento (UCR)
 Perfil F-v vertical

Metáfora de la "CAJA NEGRA"

La fuerza como medidor del resultado Del entrenamiento.

El PRINCIPAL OBJETIVO ES: proporcionar control constante información acerca de los efectos del trabajo realizado y del estado físico-técnico del deportista.

Otros objetivos muy interesantes:

- 1. Controlar el proceso de entrenamiento / cambios en el rendimiento
- 2. Valorar la relevancia de la fuerza en el rendimiento específico: varianza explicada .Comprobar la relación entre los progresos en fuerza y el rendimiento específico: relación entre cambios .
- 3. Definir las necesidades de fuerza
- 4. Definir el perfil del deportista: puntos fuertes y débiles
- 5. Predecir los resultados.
- 6. Prescribir el entrenamiento más adecuado en función de:
- Las necesidades de fuerza en el deporte y del propio sujeto
- Los resultados de los tests realizados hasta el momento (análisis estadístico)
- 8. Discriminar entre deportistas del mismo y de diferentes niveles deportivos

Tipos de evaluación y preferencias.

<u>Isométricas</u>

Muy fiables ICC>0,90 (Abernethy y col 1995), buen indicador de F máxima, pero baja relación con el rendimiento.

Isocinéticas.

Según P Kannus (1994), Desventajas: movimiento no natural y poco comparable. Lo mejor, permite controlar desequilibrios a diferentes velocidades, cercanas a la competición.

Isoinerciales, con instrumento de medida.

Ventajas:

Patrones de movimiento parecidos a la competición. (CRONIN et al., 2003; JIDOVTSEFF et al., 2006, 2007; MURPHY & WILSON, 1996)

Obtención de velocidad, fuerza, perfil de fuerza velocidad, fuerza dinámica máxima, potencia.

Procedimiento sensible para seguimiento longitudinal (ABERNETHY & JURIMAE, 1996)

Inconvenientes: Experiencia del sujeto para Que el test sea válido

¿Qué podemos medir?. Importancia de la velocidad de ejecución

- Fuerza y todos sus componentes (RFD,Fmax,Fmed).
- · Velocidad(instantánea, media, media propulsiva).
- Potencia (media, media propulsiva y pico).
- Otras variables (aceleración, tiempo o espacio)

¿Porqué velocidad y no potencia o %RM?

- -Buenas propiedades psicométricas.
- -Buena sensibilidad al cambio.
- -Expresión de esfuerzo real.
- -Estudio de la curva F-V y cada % de la RM
- -Potencia en función de la velocidad no como %
- -Entrenamiento de F en base a la velocidad y no al % de RM
 - Velocidad media acelerativa al alcanzar la potencia media máxima
 - <u>% de 1RM con el que se alcanza la potencia media máxima</u>
 - <u>Velocidad media con la que se alcanza la RM en cada ejercicio</u> (modificado de González-Badillo, JJ., 2000)

Ejercicios	Vel. media acelerativa (m/s)	% de 1RM	Vel. media acelerativa (m/s) con 1RM
Arrancada (n = 26)	1,15(±0,12)	91(±5,6)	1,04(±0,09)
Carg. de fza. $(n = 25)$	1,09(±0,1)	87(±6,7)	0,9(±0,08)
Sentadilla (n = 22)	0,93(±0,12)	64,3(±7,6)	0,31(±0,05)
Press banca (n = 32)	1,15(±0,1)	40(±5,5)	0,2(±0,05)

CARGA(%RM) REP 25.7± 5.8 50% (0,93 m s-1) (19-40)22.7 ± 4.4 55% (0,86 m s-1) (16-32)19.6 ± 3.4 60% (0,79 m s-1) (15-26)65 % (0,71 m s-1) 16.2 ± 3.4 (12-22)12.6 ± 2.7 70% (0,62 m s-1) (9-19)

9.8±1.7

(7-13) 7.7 ± 1.5

(5-10)

4.9 ± 1.2 (4–8)

González-Badillo JJ. y col. 2017

75% (0,54 m s-1)

80% (0,47 m s-1)

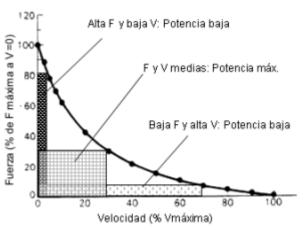
85% (0,39 m s-1)

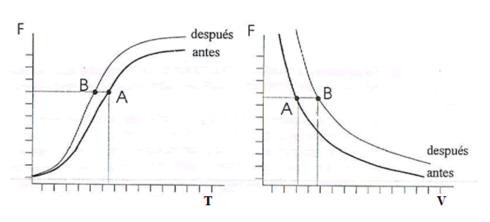
Relación velocidad de la RM y el % con el que se alcanza la máxima potencia: 0,94

Consecuencias: un mismo porcentaje o una misma velocidad representan cargas muy diferentes según el ejercicio.

¿Qué podemos medir?. Importancia de la velocidad de ejecución

- Fuerza y todos sus componentes (RFD,Fmax,Fmed).
- · Velocidad(instantánea, media, media propulsiva).
- Potencia (media, media propulsiva y pico).
- Otras variables (aceleración, tiempo o espacio)


- Velocidad media acelerativa al alcanzar la potencia media máxima
- •% de 1RM con el que se alcanza la potencia media máxima
- <u>Velocidad media con la que se alcanza la RM en cada ejercicio</u> (modificado de González-Badillo, JJ., 2000)


Ejercicios a				
Arrancada (n = 26) Carg. de fza. (n = 25) Sentadilla (n = 22)	1,15 By Marco A. Soria	Lower-Body Res ano • Pedro Jiménez-Reyes • Matt	mal Power Produ sistance Exercise hew R. Rhea • Pedro J. Marin, Spor alysis were based on 27 stu	Uesigned by @YLMSportScience
Press banca (n = 32)	1,1	NCLUSIO	N	>70 % of 1RM
Relación velocidad de la Consecuencias: un representan cargas	op Loa PPRO ex	PTIMAL ADS FOR PEAK OWER DUCTION ARE PECIFIC	Heavie production From Moder load fo	er loads resulted in greater peak power nin the power clean and hang power dean and hang power production in the squat exercise and hang power production in the jump squat

	#120356560		
CARGA(%RM)	REP		
50% (0,93 m s-1)	25.7± 5.8 (19-40)		
55% (0,86 m s-1)	22.7 ± 4.4 (16–32)		
60% (0,79 m s-1)	19.6 ± 3.4 (15–26)		
65 % (0,71 m s-1)	16.2 ± 3.4 (12–22)		
70% (0,62 m s-1)	12.6 ± 2.7 (9–19)		
75% (0,54 m s-1)	9.8±1.7 (7–13)		
80% (0,47 m s-1)	7.7 ± 1.5 (5–10)		
85% (0,39 m s-1)	4.9 ± 1.2 (4–8)		

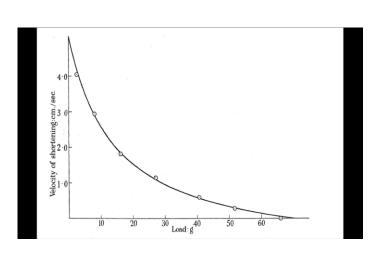
González-Badillo JJ. y col. 2017

¿Qué pretendemos conseguir y como hacerlo?.

Distintos valores de potencia en el área bajo la curva fuerza-velocidad. Un desplazamiento de la curva F-V a la derecha en todos las zonas significaría un aumento de cualquiera de los valores de potencia

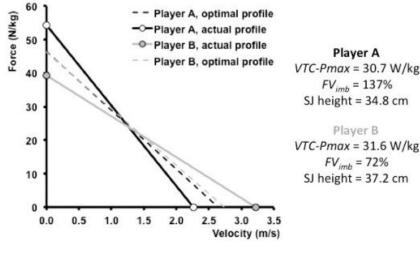
MAYOR VELOCIDAD = MAYOR FUERZA = MAYOR RENDIMIENTO

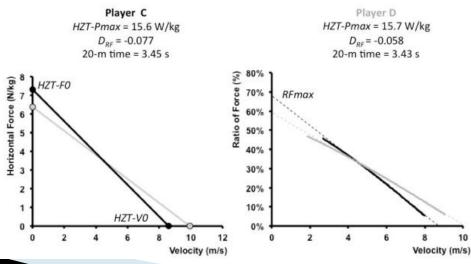
TODOS LOS DEPORTES



Teoría de los vectores de fuerza (Los Arcos A y cols 2014). Mayor especificidad e individualización

¿Qué pretendemos conseguir y como hacerlo?.




Teoría de los vectores de fuerza (Los Arcos A y cols 2014). Mayor especificidad e individualización

Hill, A V, 1938

(Morin & Samozino, 2016)

Perfil de FV Vertical

Perfil de FV horizontal

Según Alcaraz (2009), el sprint es la habilidad de correr a máxima velocidad o cerca de la máxima velocidad durante cortos periodos de tiempo y esta habilidad está fuertemente relacionada con la capacidad de fuerza y potencia en el salto vertical como el CMJ y el SJ.

Zweifel M en 2017. En un reciente meta-análisis se observó una alta correlación entre la sentadilla y la velocidad de sprint (r=-0,77; p<0,001). Sin embargo, grandes incrementos en el 1 RM en sentadilla (23-27%) tan solo suponen un incremento del 2-3 % en la velocidad de sprint

De esta forma, la simple valoración del CMJ permite inferir los niveles de fuerza máxima o velocidad de sprint de los deportistas

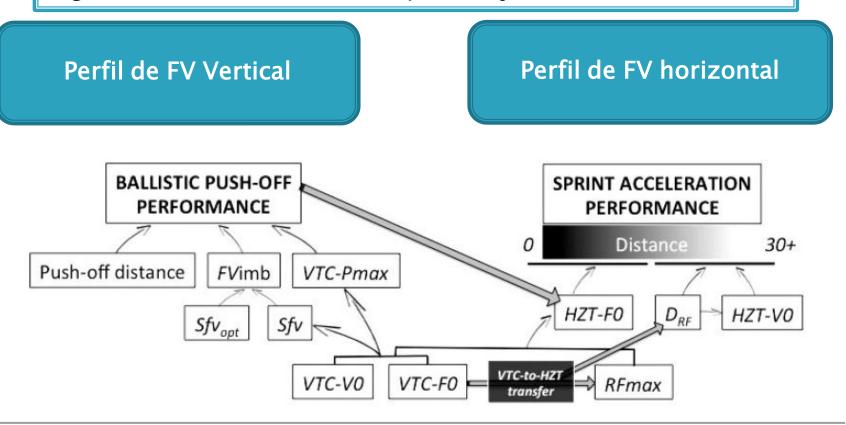


Figure 4 — Decision tree to interpret the force-velocity-power profiles in relationship with ballistic push-off (eg, jumping) and sprinting performances. These mechanistic relationships are based on both the theoretical features of our models^{5,6,9–13,20} and some experimental evidence (^{18,19} and unpublished data). In sprinting, the shorter the acceleration distance, the higher the importance of HZT-FO capabilities compared with HZT-VO, and vice versa. Abbreviations: FV_{lmb} , magnitude of the relative difference between the slope of the linear force–velocity relationship (Sfv) and Sfv_{opt} ; VTC-Pmax, maximal mechanical power output; HZT-FO, maximal horizontal force production; D_{RE} rate of decrease in the ratio of force with increasing speed during sprint acceleration; HZT-VO, maximal running velocity; RFmax, maximal ratio of force.

(Morin & Samozino, 2016)

Perfil de FV Vertical

Perfil de FV horizontal

(Jiménez-Reyes, Samozino, & García-Ramos, 2018) (Marcote-Pequeno et al., 2019)

CONCLUSIONS

The P_{max} and the performance variables (i.e., SJ height and sprint time to 20 m) were the variables more correlated between the jumping and sprinting testing procedures. However, the magnitude of the correlations observed for F_0 and v_0 generally ranged between trivial and small. Interestingly, our results also showed a tendency toward a decrement in the magnitude of the correlations with increasing levels of practice (i.e., the relationship between the variables of both tasks decreased from low level to elite participants). These results suggest that the jumping and sprinting testing procedures could provide similar information, particularly regarding P_{max} , and performance variables, when assessing low level participants. On the other hand, the low correlations generally observed between the mechanical outputs in high level and elite athletes indicate that the jumping and sprinting testing procedures provide distinctive information regarding the FVP profile of lower body muscles. Therefore, we recommend the assessment of the FVP profile both in jumping and sprinting to gain a deeper insight into the maximal mechanical capacities of lower-body muscles, especially at high and elite levels.

The two main practical applications of the present study are that (1) it provides reference values of the maximal force-, velocity-, and power-producing capabilities as well as of performance variables (unloaded SJ height and sprint time to 20 m) of athletes of different sport modalities, levels of practice and sex in two important tasks, and (2) it highlights that the FVP profile obtained during one acyclic task as jumping should not be used to infer these mechanical properties of the athletes (and in turn directly design testing or training) in a multi-direction cyclic task as sprinting. Therefore, the FVP profile should be determined with exercises as similar as possible to the targeted performance task.

Perfil de FV Vertical

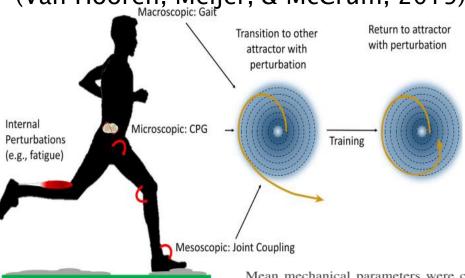
CONCLUSIONS

The $P_{\rm max}$ and the performance variables (i.e., SJ height and sprint time to 20 m) were the variables more correlated between the jumping and sprinting testing procedures. However, the magnitude of the correlations observed for F_0 and v_0 generally ranged between trivial and small. Interestingly, our results also showed a tendency toward a decrement in the magnitude of the correlations with increasing levels of practice (i.e., the relationship between the variables of both tasks decreased from low level to elite participants). These results suggest that the jumping and sprinting testing procedures could provide similar information, particularly regarding $P_{\rm max}$, and performance variables, when assessing low level participants. On the other hand, the low-correlations generally observed between the mechanical outputs in high level and elite athletes indicate that the jumping and sprinting testing procedures provide distinctive information regarding the FVP profile of lower body muscles. Therefore, we recommend the assessment of the FVP profile both in jumping and sprinting to gain a deeper insight into the maximal mechanical capacities of lower-body muscles, especially at high and elite levels.

The two main practical applications of the present study are that (1) it provides reference values of the maximal force-, velocity-, and power-producing capabilities as well as of performance variables (unloaded SJ height and sprint time to 20 m) of athletes of different sport modalities, levels of practice and sex in two important tasks, and (2) it highlights that the FVP profile obtained during one acyclic task as jumping should not be used to infer these mechanical properties of the athletes (and in turn directly design testing or training) in a multi-direction cyclic task as sprinting. Therefore, the FVP profile should be determined with exercises as similar as possible to the targeted performance task.

(Morin & Samozino, 2016)

Perfil de FV horizontal

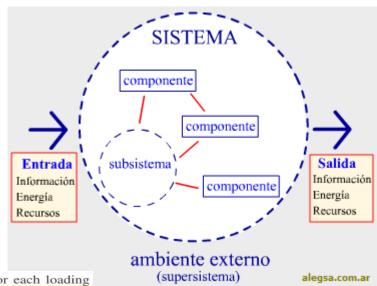

EL resultado se relaciona pero sus partes no?.

No conocemos la interacción de las variables. La física Newtoniana no lo puede explicar todo

Perfil de FV Vertical

Perfil de FV horizontal

(Van Hooren, Meijer, & McCrum, 2019)

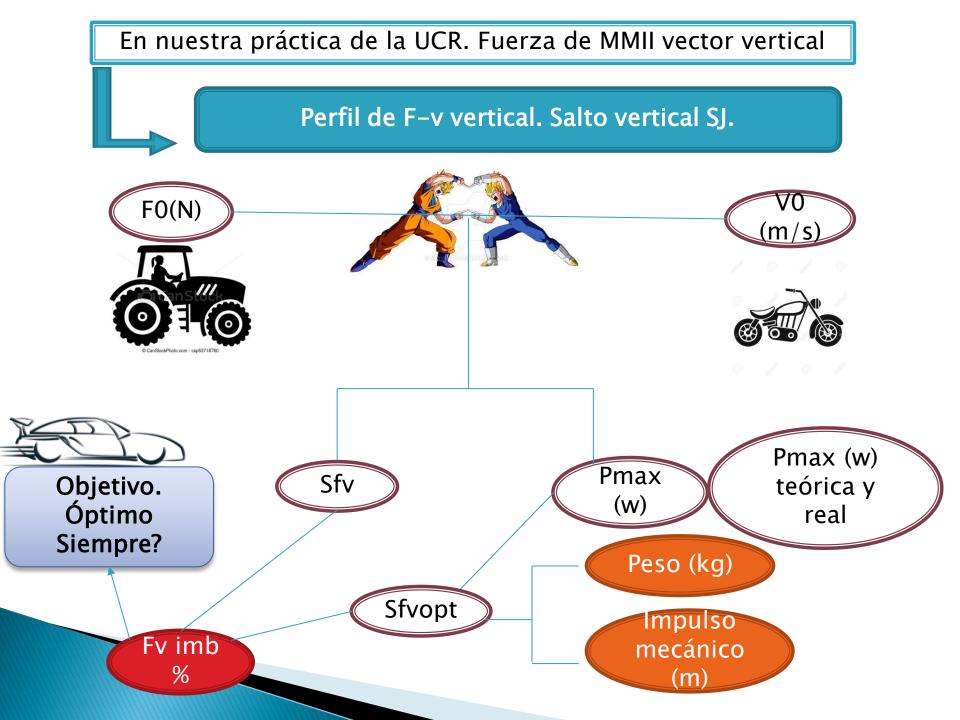

Environmental Perturbations (e.g., surface)

Mean mechanical parameters were calculated for each loading condition using Samozino's method,²³ based on Newton's second law. This method establishes that mean force (\overline{F}) , velocity $(\overline{\nu})$, and power (\overline{P}) can be calculated during a vertical jump from the jump height and squat jump positions measurement. Jump height was obtained using an OptoJump Next optical measurement system (Microgate, Bolzano-Bozen, Italy). \overline{F} , $\overline{\nu}$, and \overline{P} were calculated using the following equations:

$$\overline{F} = mg \left(\frac{h}{h_{PO}} + 1 \right), \tag{1}$$

$$\overline{v} = \sqrt{\frac{gh}{2}}$$
, (2)

$$\overline{P} = mg \left(\frac{h}{h_{PQ}} + 1 \right) \sqrt{\frac{gh}{2}}, \qquad (3)$$

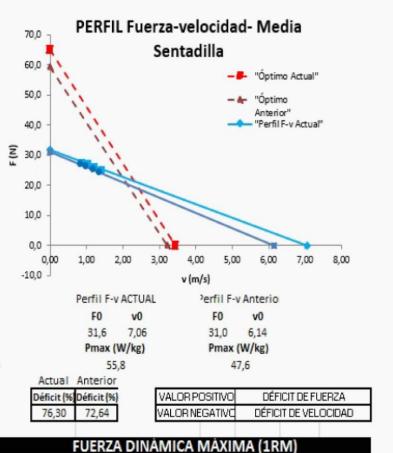

Salto vertical SJ, CMJ, SLCMJ,

- Habilidad específica con numerosos deportes.
- Predictor de niveles de fuerza y velocidad.
- Su entrenamiento mejora las capacidades neuromusculares del sujeto.
- Muy buen predictor y controlador de fatiga. Sánchez-Medina y González-Badillo (2010)
- Control de asimetrías entre Miembros en el Salto vertical SLCMJ (Bishop C y col. 2018)

En nuestra práctica.

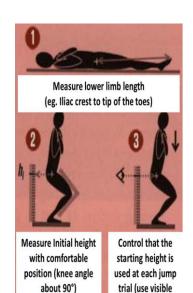
CENTRO DE MEDICINA DEL **DEPORTE**

UNIDAD DE CONTROL DEL RENDIMIENTO


EVALUACIÓN DE LA POTENCIA MUSCULAR

NOMBRE:	Guille			LIBRE		
DEPORTE:	Badmir	iton		PESO (kg):	80	79,4
MODALIDAD:				FECHA:	29/03	/2019
EJERCICIO:	Media Sentadilla		dilla	POSICION		
1RM LIBRE(Kg)	160	144		SEXO	М	
				INSTRUMENTO	Perf	il-F-v

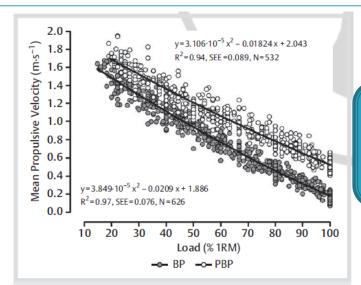
TIPO DE SALTO*	SJ	CMJ	CMJ 120	CMJ DER	ABA	DJ
ALTURA DE SALTO (cm)	40,7	43	22,8	19,6		42,8
TIEMPO DE VUELO (seg)	0,576	0,591	0,433	0,400		0,591
TIEMPO DE CONTACTO (seg)						0,189


* En todos los test, debido al posible error del sujeto se desechan los saltos extremos y se coge la media de los centrales

RESULTADOS	WALCONSO DE DESERVEIA					
ALTURA CAIDA (cm) - £3./	40,0	VALORES DE REFERENCIA				
FUERZA ELÁSTICA (%)	5,3	>10				
USO DE BRAZOS (%)		>10				
COEFICIENTE	2.25	Bajo	Medio	Bueno	Alto	Elite
REACTIVIDAD (RSI)	2,26	<1.5	1.5-2	2-2.5	2.5-3	>3
DÉFICIT UNILATERAL (%)	13,99	<10%				
DÉFICIT BILATERAL (%)	1,59			<10%		
DO DE GALTO*	61	CARL	C14117C	CHIPPE	ADA	0.1

		29/03/2019				
CARGA (KG)	70,0	110,0	125,0			
%1RM	44	69	78			
VELOCIDAD MEDIA (M/S)	1,22	0,82	0,66			
DA IADA(OLO	C2 70	40.00	44.00	1		

Perfil de F-v vertical. Salto vertical SJ.



- 1.Peso corporal del sujeto (Kg).
- 2.La longitud de sus miembros inferiores. (m) para control de impulso mecánico
- 3. No escatimen en el calentamiento, (foam, movilidad y aproximación a las cargas de ejecución)
- 3.La altura alcanzada en un test de saltos con 5 cargas diferentes por ejemplo, 0-40-50-60-80% del peso corporal del deportista).O hasta alcanzar una altura cercana a los 10cm de salto.
- 4. Una vez obtenemos el perfil debemos asegurarnos que la Bondad del ajuste lineal entre la F-V es >0,90 y preferiblemente >0,95 en R2

RM estimación lineal para orientación del entrenamiento

Ecuación única para todos los sujetos o individual?

Ecuación polinómica

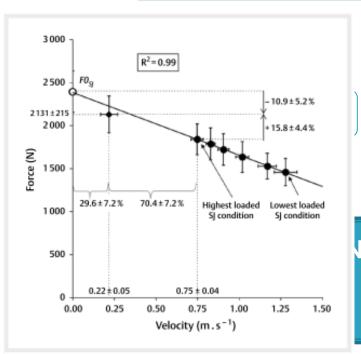
Fig. 2 Relationship between relative load (% 1RM) and mean propulsive velocity for the BP and PBP exercises directly obtained from raw data pairs derived from the 75 progressive isoinertial loading tests performed in each exercise.

Ecuación lineal

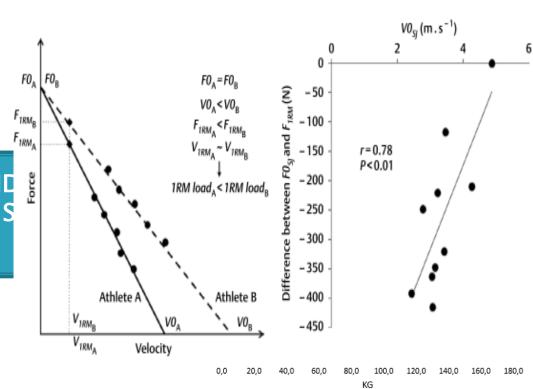
! Siempre que puedas...

FUERZA DINAMICA MAXIMA (1RM)							
29/03/2019							
CARGA (KG)	70,0 110,0 125,0						
%1BM	44	69	78				
VELOCIDAD MEDIA (M/S)	1,22	0,82	0,66				
BAJADA(CM)	53,70	48,00	41,00				
			16/06/201	18			
CARGA (KG)	35,0	70,0		100,0			
%1RM	24	48		69			
VELOCIDAD MEDIA (M/S)	1,33	1,02		0,72			
BAJADA (CM)	53,00	51,29		47,43			

118,425


Velocidad Media - Media Sentadilla

1,53
1,33
1,13
2,00
1,13
0,73
0,73
0,53
0,03
0,00
20,0
40,0
60,0
80,0
100,0
120,0
140,0
160,0
180,0
180,0


para mas información consultar García-Ramos y col. 2017

(Gonzalez-Badine * Sanchez-Medina, 2010)

RM estimación lineal para orientación del entrenamiento

▶ Fig. 2 Force-velocity relationship obtained from loaded squat jumps (black points) and 1RM condition (black diamond). All symbols and values correspond to averaged data (± SD) across all subjects. The averaged horizontal position of the 1RM point relatively to the point of the highest loaded condition in squat jump (SJ) was underlined by the curly brackets and mean±SD percentage values. The black pointers and mean±SD percentage values depicts the averaged vertical position of the 1RM point relatively to FO_{SJ} and the point of the highest loaded condition in squat jump.

(Gonzalez-Badine Sanchez-Medina, 2010)

para mas información consultar García-Ramos y col. 2017

Mean Propulsive Velocity (m·s⁻¹)

Fig. 2

velocit

derive

each e

Carácter del esfuerzo como alternativa de entrenamiento y orientación a la velocidad

La velocidad de ejecución en cada serie o la perdida de velocidad de ejecución después del entrenamiento es el mejor método de orientar el entrenamiento

"La velocidad de ejecución como referencia para la programación, control y evaluación del entrenamiento de fuerza"

Unidades básicas de entrenamiento en la Unidades b

Pero.... Y si no podemos ??

EL carácter del esfuerzo al rescate

González-Badillo JJ. y col 2017

Carácter del esfuerzo	Pérdida de velocidad en la serie	Repeticiones realizadas en la serie	Ejemplos	
Ligero o pequeño	5-10%	Menos de la mitad de las posibles	4-6(16-30), 3-4(10-14)	
Medio	15-30%	La mitad de las posibles	6-7(12-14),4-5(8-10)	
Alto o muy alto	Alto o muy alto >25-30%		3(5),4(7),5-6(8),8(12)	
Máximo	50-70%	Máximo o casi máximo número posible	9-10(10),7-8(8),3-4(4)	

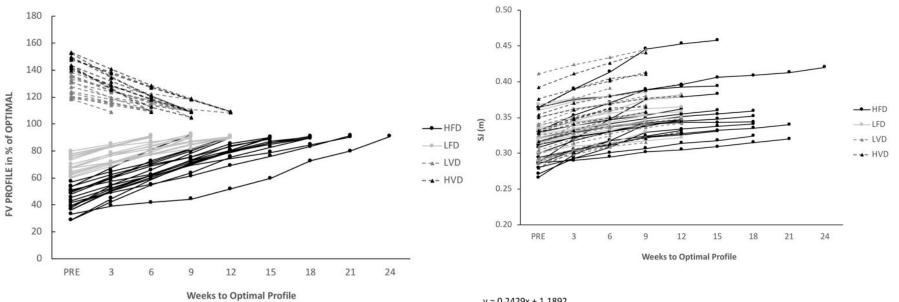
,					i			i		
Unic	Unidades básicas de entrenamiento en régimen de activación concéntrica con ejercicios útiles no específicos Juan José González Badillo 2012-									
Nº	Carácter	Repeticiones	% 1RM	Influencia sobre la mejora de la		Efecto sobre la	Efecto sobre la	Observaciones		
	del	por serie, series	(aproximado)	fue	rza	fuerza máxima	RFD			
	esfuerzo	y recuperación		Neural	Hipertrófica					
1	Máximo o	R/s: 1-3					***	No se debe aplicar a deportistas		
	casi	Series: 3-5 (1)	90-100	***** (2)	**	****	en la zona alta	principiantes ni en deportes con		
	máximo	Recup.: 3-5'					de la curva f-t	medias o bajas necesidades de		
								fuerza		
2	Máximo o	R/s: 3-5					***	Sólo aplicable a sujetos muy		
	casi	Series: 4-5	85-90	****	***	****	en la zona alta	entrenados y con muchas		
	máximo	Recup.: 3-5'					de la curva f-t	necesidades de fuerza		
3	Máximo o	R/s: 5-7					**	Si el carácter del esfuerzo es		
	casi	Series: 3-5	80-85	***	****	****	en la zona alta	máximo, no se debe utilizar con		
	máximo	Recup.: 3-5'					de la curva f-t	principiantes o sujetos con		
								necesidades moderadas de fuerza		
4	Máximo o	R/s: 6-12					*	No para principiantes		
	casi	Series: 3-5	70-80	**	****	****	en la zona alta	No si no se puede ganar peso		
	máximo	Recup.: 1-5'					de la curva f-t	Más hipertrofia si la recuperación		
								es corta		
5		R/s: 4-6				****	***	Muy adecuado para sujetos con		
	Medio	Series: 3-5	70-80	***	**	En sujetos	en la zona	necesidades medias y medias-		
		Recup.: 2-4'				medianamente	media y alta de	bajas de fuerza		
						entrenados	la curva f-t			
6		R/s: 5-8				****	***	Útil para principiantes, jóvenes y		
	Medio	Series: 3-5	60-75	****	*	En sujetos	en la zona	deportistas con necesidades		
		Recup.: 3-5'				medianamente	media y alta de	medias-bajas de fuerza		
						entrenados	la curva f-t			
7		R/s: 6-10			*	***	***	Jóvenes y necesidades bajas de		
	Bajo	Series: 3-5	30-70	***		En sujetos poco	en toda la curva	fuerza		
		Recup.: 3-5'				entrenados	f-t			

Las intensidades indicadas son las máximas del ciclo y de la vida deportiva

- (1): Las series indicadas son las que se hacen con los porcentajes propuestos aquí. Previamente se harán varias series de calentamiento con porcentajes menores
- (2): Los asteriscos indican el grado de influencia en la mejora. Cuantos más asteriscos mayor es la influencia
- R/s: repeticiones por serie. El carácter del esfuerzo máximo no debería aplicarse prácticamente nunca, sólo en muy pocas ocasiones y en pocos sujetos.

 El máximo ajuste de la intensidad (%1RM, grado de esfuerzo, carácter del esfuerzo) se hará a través de la velocidad propia de cada porcentaje según el ejercicio de que se trate

Para programar lo evaluado.


TABLE 1 | Force-velocity imbalance categories, thresholds, and associated resistance training load ratios.

FV _{imb} categories	F-v profile in % of optimal	Training loads ratio*	Loading focus/target	Exercises	Training loads	
	thresholds (%)		Strength	Back squat	80-90% 1RM	
High force deficit	<60	2 Strongth		Leg press	90-95% 1RM	
High force deficit	<80	3 Strength		Deadlift	90-95% 1RM	
		2 Strength-power				
		1 Power	Strength-power	Clean pull	80% 1RM	
Low force deficit	60-90	2 Strength		Deadlift	80% 1RM	
2011 10100 0011010		2 Strength-power		SJ	>70% of BW	
		2 Power		CMJ	>80% of BW	
		21000	Power	SJ	20-30% of BW	
Well-balanced	>90-110	1 Strength		CMJ	35–45% of BW	
		1 Strength-power		Single leg SJ	BW	
		2 Power		Single leg CMJ	10% of BW	
		1 Power-speed		Clean pull jump	65% 1RM	
		1 Speed				
20 00 MM 000000000000000000000000000000	STORMAN MODERN		Power-speed	Depth jumps		
Low velocity deficit	>110-140	2 Speed		SJ	BW	
		2 Power-speed		CMJ	10% of BW	
		2 Power		Maximal Vertical Box Jump		
High velocity deficit	>140	3 Speed	Speed	Maximal Roller Push-off	<bw< td=""></bw<>	
		2 Power-speed		CMJ with arms	BW	
		1 Power	RM. repetition maximum: SJ	Squat Jump; BW, body weight; CM	J. Countermovement	

FV_{imb}, F-v imbalance. *Ratio based on six exercises/wk, three sets/exercise and 18 sets/wk.

(Jiménez-Reyes, Samozino, Brughelli, & Morin, 2016)

Para programar lo evaluado.

(Jiménez-Reyes, Samozino, & Morin, 2019)

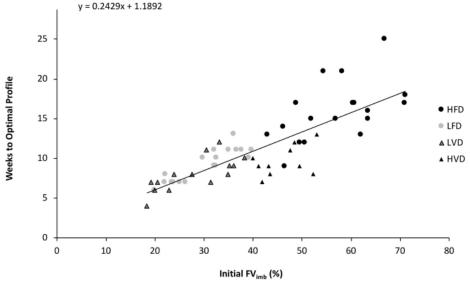


Fig 3. Correlation between initial FV_{imb} and time needed to reach an optimal F-v profile.

En nuestra práctica.

Variables

Dif signifitativas > error del test	SJ (m)	P.max/peso (W/kg)	Déficit PF-v%	Fuerza din maxima RM	F0 (N/kg)	V0 (m/s)	Interpretación del test
Caso 1	Mejora	Mejora	reduce def	Mejora	mejora	mejora	Muy buen resultado de entrenamiento
Caso 2	Mejora	Mejora	sin cambio	Mejora	Mejora	Mejora	Muy buen resultado de entrenamiento. Poca reducciónd el déficit , deficit bajo
Caso 3	Mejora	Mejora	empeora	Se mantiene o sube o baja un poco	Se mantiene o sube o baja un poco	Mejora	Buen resultado de entrenamiento en rendimiento. Podria ser un resultado no del todo satisfactorio según objetivo. Si se busca mejora de Fmáxima o se ha buscado mejora de la RFD
Caso 4	Bajada	Bajada	Reduce déf	Mejora	Mejora	Empeora	Orientación del entrenamiento a la Fmáx, sin control o sesiones en cargas bajas pierde rendimiento. Resultado de entrenamiento malo
Caso 5	Bajada	Bajada	aumenta/mantiene o disminuye	Empeora	Empeora	Empeora	Desentrenamiento o falta de entrenamiento. Resultado malo. Peor escenario posible

En nuestra práctica.

SALTOS Y MEDIA SENTADILLA

CENTRO DE MEDICINA DEL DEPORTE

UNIDAD DE CONTROL DEL RENDIMIENTO

Atleta ▼	Peso 🔻	CMJ (cm) pre	CMJ (cm) actual	Cambio (cm)	SWC Cambio cualitativo		Déficit Perfil F-v (%) actual	Cambio (%)	SWC Cambio cualitativo	Pot Máx (w/kg) Pre	Pot Máx (w/kg) Actual	Cambio (w/kg)	SWC Cambio cualitativo
Caso 1	72,6	35,1	39,4	4,3	Aumento Real	33	20	-13,4	Descenso real	26,5	27	0,2	Posible aumento
Caso 2	74	45,2	47,0	1,8	Aumento Real	37	40	3,0	Posible aumento	33,0	38	4,8	Aumento Real
Caso 3	70	26,7	29,8	3,2	Aumento Real	49	53	4,5	Aumento Real	24,5	26	1,0	Aumento Real
Caso 3_2	83	33,5	36,0	2,5	Aumento Real	24	33	9,1	Aumento Real	23,0	26	2,8	Aumento Real
Caso4	68,6	42,0	39,4	-2,6	Descenso real	62	52	-9,0	Descenso real	38,5	34	-4,8	Descenso real
Caso 5	60,6	27,2	25,7	-1,5	Descenso real	46	27	-19,0	Descenso real	22,9	19	-4,1	Descenso real
			_										

 MEDIA:
 34,93
 36,22
 41,8
 37,7
 28,1
 28,1

 DESVIACIÓN TÍPICA:
 7,6
 7,6
 2,7
 13,5
 11,2
 6,7

220111101011111111111111111111111111111					_,:								
Atleta	1RM (kg) pre	1RM (kg) actual	Cambio (kg)	SWC Cambio cualitativo	F0pre	F0post	Cambio	SWC Cambio cualitativo	V0pre	V0post	Cambio	SWC Cambio cualitativo	
Caso 1	153	157	4	Posible aumento	33,4	35,00	1,6	Aumento Real	3,3	3,00	-0,30	Posible aumento	
Caso 2	183	229	46	Aumento Real	37,0	38,60	1,6	Aumento Real	3,7	3,92	0,22	Posible aumento	
Caso 3	117	119	2	Posible aumento	28,5	27,30	-1,2	Posible descenso	3,4	3,75	0,35	Aumento Real	
Caso 3_2	143	144	1	Posible aumento	32,9	32,60	-0,3	Posible descenso	2,8	3,16	0,36	Aumento Real	
Caso4	123	144	21	Aumento Real	31,1	33,10	2,0	Aumento Real	5,0	4,07	-0,89	Descenso real	
Caso 5	121	100	-21	Descenso real	28,0	29,00	1,0	Posible descenso	3,3	2,50	-0,8	Descenso real	
												_	
THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA	·-			-				-					

139,8 148,7 44,2 31,8 32,6 3,4 4,1

En Vuestra práctica.

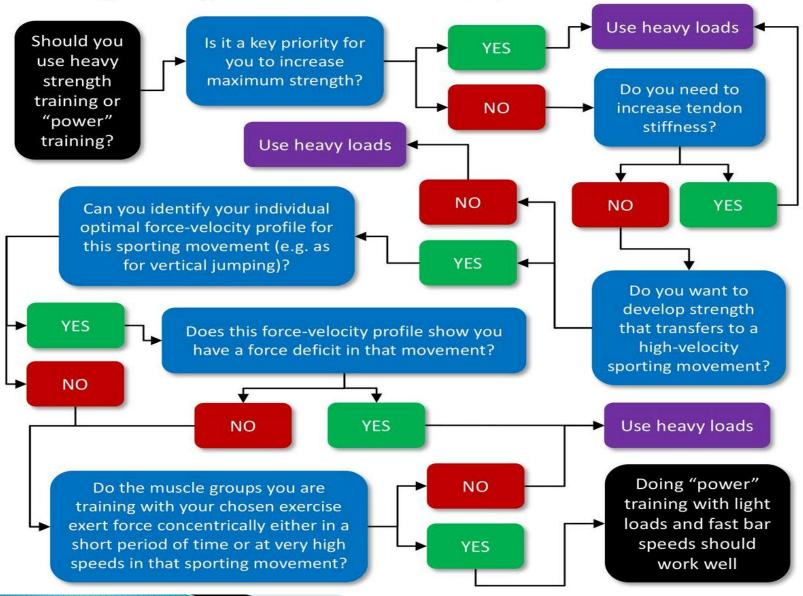
Materiales y recursos para un análisis óptimo

 Plataforma de contacto o de tiempo de vuelo.

 Medidor lineal, opto eléctrico, velocidad o posición.

Materiales y recursos para un análisis mas rutinario

 Aplicaciones de test de salto mediante video cámara.


 Acelerómetros y o aplicaciones de móvil.

(Courel-Ibáñez et al., 2019)

Should you do strength training with heavy loads or "power" training with light loads and fast bar speeds?

Bibliografía:

Abernethy PJ, Jürimäe J (1996) Cross-sectional and longitudinal uses of isoinertial, isometric, and isokinetic dynamometry. Med Sci Sports Exerc 28(9): 1180–1187

Sale, D. G. (1991). Testing strength and power. En J.D. MacDougall, H.A. Wenger and H.J. Green. Physiological Testing of the high performance athlete. Champain, Illinois. Human Kinetics.

Cronin JB, McNair PJ, Marshall RN (2003) Force-velocity analysis of strength-training techniques and load: implications for training strategy and research. J Strength Cond Res 17(1): 148-155

Jidovtseff B, Croisier JL, Lhermerout C, Serre L, Sac D, Crielaard JM (2006) The concept of iso-inertial assessment: reproducibility analysis and descriptive data. Isokinet Exerc Sci 14: 53-62

Zweifel M. Importance of Horizontally Loaded Movements to Sports Performance. Strength Condit J. 2017;39(1)

Los Arcos A, Yanci J, Mendiguchia J, Salinero JJ, Brughelli M, Castagna C. Short-term training effects of vertically and horizontally oriented exercises on neuromuscular performance in professional soccer players. International journal of sports physiology and performance. 2014;9(3):480–8

Morin, J.-B., & Samozino, P. (2016). Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. *Int J Sports Physiol Perform, 11*(2), 267-272. doi: 10.1123/ijspp.2015-0638

Alcaraz, P.E., Elvira, J.L.L & Palao, J.M. (2009). Características y efectos de los métodos resistidos en el sprint. Cultura, Ciencia y Deporte, 12(5), Vol. 4: 179-187

Zweifel M. Importance of Horizontally Loaded Movements to Sports Performance. Strength Condit J. 2017;39(1).

Van Hooren, B., Meijer, K., & McCrum, C. (2019). Attractive Gait Training: Applying Dynamical Systems Theory to the Improvement of Locomotor Performance Across the Lifespan. *Front Physiol*, *9*(1934). doi: 10.3389/fphys.2018.01934

Hill, A V. The heat of shortening and the dynamic constants of muscle. Proc R Soc L B Biol Sci 126: 136-195, 1938

Jiménez-Reyes, P. Samozino, P., García-Ramos, A., Cuadrado-Peñafiel, V., Brughelli, M., & Morin, J. B. (2018). Relationship between vertical and a contraction power profiles in various sports and levels of practice. PeerJ, 6, e5937. doi:10.7717/peerj.5937

Bibliografía:

Marcote-Pequeno, R., Garcia-Ramos, A., Cuadrado-Penafiel, V., Gonzalez-Hernandez, J. M., Gomez, M. A., & Jimenez-Reyes, P. (2019). Association Between the Force-Velocity Profile and Performance Variables Obtained in Jumping and Sprinting in Elite Female Soccer Players. *Int J Sports Physiol Perform, 14*(2), 209–215. doi: 10.1123/ijspp.2018–0233

Bishop, C., Read, P., McCubbine, J., & Turner, A. (2018). Vertical and Horizontal Asymmetries are Related to Slower Sprinting and Jump Performance in Elite Youth Female Soccer Players. *J Strength Cond Res*. doi: 10.1519/jsc.000000000002544

García-Ramos, A., Ulloa-Díaz, D., Barboza-González, P., Rodríguez-Perea, Á., Martínez-García, D., Quidel-Catrilelbún, M., . . . Weakley, J. (2019). Assessment of the load-velocity profile in the free-weight prone bench pull exercise through different velocity variables and regression models. *PLoS One, 14*(2), e0212085. doi: 10.1371/journal.pone.0212085

Gonzalez-Badillo, J. J., & Sanchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. *Int J Sports Med*, *31*(5), 347-352. doi: 10.1055/s-0030-1248333

Courel-Ibáñez, J., Martínez-Cava, A., Morán-Navarro, R., Escribano-Peñas, P., Chavarren-Cabrero, J., González-Badillo, J. J., & Pallarés, J. G. (2019). Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. *Annals of Biomedical Engineering*. doi: 10.1007/s10439-019-02265-6

Jiménez-Reyes, P., Samozino, P., Brughelli, M., & Morin, J. B. (2017). Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Frontiers in physiology, 7, 677. doi:10.3389/fphys.2016.00677

Jiménez-Reyes P, Samozino P, Morin JB (2019) Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLOS ONE 14(5): e0216681. https://doi.org/10.1371/journal.pone.0216681